Secure Shapley Value for Cross-Silo Federated Learning

Shuyuan Zheng (Kyoto Univ.),

Yang Cao (Hokkaido Univ.), Masatoshi Yoshikawa (Osaka Seikei Univ.)

Overview

• Background:

- 1. Cross-silo FL solves the data silo problem.
- 2. Contribution evaluation is important to cross-silo FL.

• Motivation:

- 1. SV is a celebrated contribution metric widely adopted in collaborative ML
- 2. Existing FL systems cannot support secure SV calculation

Challenges:

- 1. Need to additionally protect test data than secure federated training
- 2. NP-hard to compute SVs
 - Existing estimation methods work poorly in cross-silo FL because no. of clients is small
- **Our proposal:** to facilitate secure SV calculation for secure contribution evaluation

Data Silo Problem

- Data are decentralized across organizations (e.g., banks and hospitals) as silos and hardly shared due to some reasons.
 - E.g., privacy concerns, strict data regulations, data as assets
- Data silos prevent organizations from obtaining accurate machine learning (ML) models to improve products and services.
 - Large amounts of training data required for modern neural networks.

Cross-silo federated learning

- Traditional collaborative ML: uploading local datasets for training.
- Cross-silo FL: uploading local models for training

Contribution evaluation

• Clients' contributions might be diverse.

- Data silos vary in size, quality, and distribution
- Different participation levels (e.g., number of training rounds)
- Free-riding or malicious clients exist
- Shapley value (SV) [CTG53] for contribution evaluation
 - Widely adopted in collaborative ML
 - E.g., model rewards [ICML20], monetary rewards [NIPS22], client selection [AAAI21]
 - Measures the expected model accuracy improvement by each client
 - Privacy risk: SV calculation requires access to local models and test data.

[CTG53] LS Shapley. "A value for n-person games." Contributions to the Theory of Games, pages 307-317, 1953. [ICML20] Sim et al. "Collaborative Machine Learning with Incentive-Aware Model Rewards." ICML 2020. [NIPS22] Nguyen et al., "Trade-off between payoff and model rewards in Shapley-fair collaborative machine learning." NIPS 2022. [AAAI21] Nagalapatti et al. "Game of gradients: Mitigating irrelevant clients in federated learning." AAAI 2021.

Secure federated training

- [TIFS18]: using **homomorphic encryption (HE)** to make federated training secure.
 - HE: supports arithmetic operations on encrypted data.
 - Encrypted local models are uploaded for model aggregation.

[TIFS18] Phong et al. "Privacy-preserving deep learning via additively homomorphic encryption." TIFS, 13(5):1333-1345, 2018.

Secure Shapley value

- For SV calculation, no secure systems proposed
- Our proposal: secure SV calculation for secure contribution evaluation
 - Follows [TIFS18] to train models using FL + HE.
 - More challenging than [TIFS18]: test data should be protected additionally.

[TIFS18] Phong et al. "Privacy-preserving deep learning via additively homomorphic encryption." TIFS, 13(5):1333-1345, 2018.

Problem formulation

- Assumptions:
 - All the parties are honest-but-curious.
 - Test data D_i and model parameters θ_i^t are private.
 - The model structure is public.
 - Focus on neural networks and classification tasks.

- Goal: the server can compute SVs $\phi_1^t, \dots, \phi_n^t$, while **no party can** learn other parties' private information.
 - $\phi_i^t = \mathbb{E}_{S \subseteq \{1, \dots, n\} \setminus \{i\}} \left[U(\theta_{S \cup \{i\}}) U(\theta_S) \right]$
 - $U(\theta_S)$: accuracy of model θ_S
 - NP-hard to compute: need to test $O(2^n)$ models

Protocol overview

- Baseline: HESV (one-server)
 - Secure model testing: HE for both models and data [IJCAI18]
 - Secure MatMult: Matrix Squaring (extension of SOTA [SIGSAC18])
 - SOTA [SIGSAC18] cannot support large-sized neural networks
 - Problem: multiplications between ciphertexts are inefficient
- Advanced: SecSV (two-server)
 - Secure model testing: HE for models, secret sharing for data
 - Secure MatMult: Matrix Reducing (more efficient than Matrix Squaring)
 - SV estimation: SampleSkip

[IJCAI18] Gelu-net: A globally encrypted, locally unencrypted deep neural network for privacy-preserved learning [SIGSAC18] Secure outsourced matrix computation and application to neural networks.

HESV

- Secure model testing scheme: HE for both models and data [IJCAI18]
 - Linear layers (i.e., matrix multiplications) evaluated under HE
 - Nonlinear activations (e.g., softmax) evaluated in plaintext
 - HE cannot support nonlinear operations
- Problem: multiplications between ciphertexts are inefficient

Hybrid model testing scheme for SecSV

- Secure model testing scheme: HE for models, secret sharing for data
 - High efficiency because multiplications between ciphertexts are avoided
- Assumption: two non-colluding servers
 - Example: two large companies who care their business reputation.
 - Each evaluates one share of data

Matrix Reducing

- Matrix Reducing: much more efficient than Matrix Squaring (extension of SOTA [SIGSAC18])
 - Homomorphic rotation (HRot) is computationally-expensive
 - Matrix Squaring: many homomorphic rotations needed
 - Matrix Reducing: no homomorphic rotations needed

	Matrix Squaring	Matrix Reducing
Batch size <i>m</i>	$m \leq \min\{d_{in}, \lfloor \sqrt{N} \rfloor\}$	$m \leq \lfloor N/d_{out} \rfloor$
Complexity of HMult	$O(d_{in} \cdot d_{out}/\sqrt{N})$	$O(d_{in})$
Complexity of HRot	$O(d_{in}/(d_{out} \mod \sqrt{N}))$	0

[SIGSAC18] Secure outsourced matrix computation and application to neural networks.

SampleSkip

[ICML19] Towards efficient data valuation based on the shapley value. [NIPS17] A unified approach to interpreting model predictions.

- Insight: a sample correctly predicted by two models also be correctly predicted by their aggregated model.
 - Proven to be true for linear models.
 - Almost to be true for nonlinear models.
 - SampleSkip can be combined with other SV estimation methods
 - E.g., Permutation Sampling (PS) [ICML19], Group Testing (GT) [ICML19], Kernel SHAP (KS) [NIPS17]
 - SampleSkip is sample-skipping, while they are model-skipping.

- RQ1: How efficient are SecSV and HESV for secure SV calculation?
- A1: SecSV with (without) SampleSkip speeds up HESV by 7.2-36.6 (4.2-21.4) times.

Dataset	Method	S	peedup v	v.r.t. HES	Error ($\times 10^{-2}$)		
(model)			SampleSkip		SampleSkip		
			off/on		off/on		
	SecSV		$4.2 \times$	$7.2 \times$		0.10	0.10
AGNEWS	SecSV+PS		$4.2 \times$	$7.2 \times$		2.00	2.01
(LOGI)	SecSV+GT		$3.5 \times$	$5.5 \times$		3.41	3.39
	SecSV+KS		$5.3 \times$	8.6×		17.63	17.63
	SecSV		$21.4 \times$	36.6×		0.09	0.09
BANK	SecSV+PS		$21.3 \times$	36.5×		1.25	1.24
(LOGI)	SecSV+GT		8.9×	$10.8 \times$		3.40	3.40
	SecSV+KS		$27.0 \times$	$44.1 \times$		7.67	7.66
	SecSV		$7.0 \times$	25.8×		0.09	0.64
MNIST	SecSV+PS		$7.0 \times$	$25.8 \times$		2.69	2.88
(CNN)	SecSV+GT		6.9 ×	$25.3 \times$		3.58	3.80
	SecSV+KS		$9.0 \times$	$27.2 \times$		15.46	15.65
	SecSV		$5.3 \times$	11.8×		1.70	1.82
miRNA-mRNA	SecSV+PS		$5.3 \times$	11.8×		3.03	3.25
(RNN)	SecSV+GT		$5.3 \times$	11.7×		3.67	3.50
	SecSV+KS		$7.0 \times$	$14.0 \times$		20.77	20.49

- Q2: How much can SampleSkip accelerate SV calculation?
- A2: 67.05-90.77% of test samples skipped.

% of skipped samples					Da	taset Met	thod	Speedup w.r.t. HESV		Error (×10 ⁻²)	
100%		85 94%	90.77%	Vorg Wrong	(m	odel)		Sampl off/	eSkip on	Sampl off	leSkip /on
80%	- <mark>76.92%</mark>	03.94 70		67.05%	AGI (L0	Sec NEWS SecS OGI) SecS SecS	cSV V+PS V+GT V+KS	$4.2 \times 4.2 \times 3.5 \times 5.3 \times$	7.2× 7.2× 5.5× 8.6×	0.10 2.00 3.41 17.63	0.10 2.01 3.39 17.63
60%				· · · · · · · · · · · · · · · · · · ·	BA (LC	Sec ANK SecS OGI) SecS SecS	cSV V+PS V+GT V+KS	21.4 × 21.3 × 8.9 × 27.0 ×	36.6× 36.5× 10.8× 44.1×	0.09 1.25 3.40 7.67	0.09 1.24 3.40 7.66
40% 20%					Mi (C	Sec NIST SecS NN) SecS SecS	cSV V+PS V+GT V+KS	7.0 × 7.0 × 6.9 × 9.0 ×	25.8× 25.8× 25.3× 27.2×	0.09 2.69 3.58 15.46	0.64 2.88 3.80 15.65
0%	0.00% AGNEWS	0:00% BANK	0.16% MNIST	0:22% miRNA-mRNA	miRNA (R	Sec A-mRNA SecS NN) SecS' SecS'	cSV V+PS V+GT V+KS	5.3 × 5.3 × 5.3 × 7.0 ×	11.8× 11.8× 11.7× 14.0×	1.70 3.03 3.67 20.77	1.82 3.25 3.50 20.49

- Q3: How many test samples are wrongly skipped by SampleSkip?
- A3: 0.00% for linear models; 0.16%-0.22% for nonlinear models.

- Q4: How efficient are Matrix Reducing for secure MatMult?
- A4: Matrix Reducing speeds up Matrix Squaring by **1.69-11.39** times.

Table 4: Speedup of Matrix Reducing w.r.t. Matrix Squaring in the time per sample spent on HE computations for evaluating *AB*. The shape of matrix *A* is varied. "Full" means both *A* and *B* are encrypted, whilst "Half" means only *A* is encrypted.

Shape	4×300	2×48	64×256	10×64	32×64	32×32	2×32
Full	1.69×	6.10×	1.99×	$2.30 \times$	2.66×	2.85×	2.45×
Half	3.24×	11.39×	$3.92 \times$	$4.49 \times$	$5.23 \times$	$3.71 \times$	$2.87 \times$

Conclusion

- Contribution: the first study on secure SV calculation in collaborative ML.
- Limitations:
 - 1. SecSV requires noncolluding servers.
 - 2. Protocols tailored for horizontal FL.
 - Clients have different samples with the same attributes.
 - 3. Only neural networks and classification tasks considered.
- Future work:
 - 1. More efficient one-server protocol.
 - 2. Secure SV calculation for vertical FL.
 - Clients have different attributes of the same samples.
 - 3. Consider more types of models and ML tasks.

Thank you for listening. Welcome to visit our poster in range 71-75!

