0 IEEE BigData 2022 @Osaka FL-Market: Trading Private Models in Federated Learning Shuyuan ZHENG, Kyoto University Yang Cao, Hokkaido University Masatoshi Yoshikawa, Kyoto University Huizhong Li, WeBank Qiang Yan, Singapore Management University

Dilemma of ML

• 1. Huge amounts of data required

• Facebook's object detection system has been reported to be trained on 3.5 billion images from Instagram.

• 2. Privacy concerns

 \bigcirc

• Millions of Facebook users' personal data was acquired without the individuals' consent by Cambridge Analytica, predominantly to be used for political advertising.

• 3. Expensive datasets

• People are becoming increasingly aware of the economic value of their data.

Model Trading

- Selling trained ML models
 - Cheaper than datasets

0

- Buyers do not contact training data.
 - Relieve privacy concerns

• Problem: Models still contain private information.

Existing Model Marketplaces

• No privacy protection supported [1, 2]

 \bigcirc

- Privacy protection against buyers [3, 4, 5]
 - A trusted broker injects noise into models
 - Uniform privacy protection levels

Chen et al., "Towards model-based pricing for machine learning in a data marketplace," SIGMOD, 2019.
Jia et al., "Efficient task-specific data valuation for nearest neighbor algorithms," PVLDB, 2019.
Agarwal et al., "A marketplace for data: An algorithmic solution," in ACM-EC, 2019.
Liu et al., "Dealer: An end-to-end model marketplace with differential privacy," PVLDB, 2021.
Jiang et al., "Pricing GAN-based data generators under R'enyi differential privacy," Information Sciences, 2022.

Problems

- 1. Unrealistic assumption: **trusted** broker.
 - Many giant companies were involved in privacy scandals and data breaches
 - Data owners need local privacy.

- Privacy against both model buyers and the broker
- 2. **Uniform** privacy protection levels
 - Data owners have different privacy preferences
 - Data owners need **personalized privacy** protection.
- Our goal: to design a model marketplace that supports **local and personalized privacy**.

Local and Personalized Privacy by FL + LDP

• Federated learning (FL) [6]

 \bigcirc

- Data owners collaboratively train a model by submitting local gradients.
- The local gradients are **aggregated into a global gradient** for model updating.
- Local privacy: Training data maintained on the local sides
- Local differential privacy (LDP) [7]
 - Ensure the **indistinguishability** of any two local gradients.
 - Local privacy: Data owners perturb local gradients on the local sides.
 - **Personalized privacy**: Data owners can set different privacy losses ϵ_i .

[6] McMahan et al., "Communication-efficient learning of deep networks from decentralized data," AISTATS, 2017.[7] Evfimievski et al., "Limiting privacy breaches in privacy preserving data mining," PODS, 2003.

FL-Market: A Model Marketplace with Local and Personalized Privacy

- 1. Gradients aggregation under personalized privacy losses
 - The conventional aggregation method only considers data size.
 - Different privacy losses result in **different accuracy levels**
- 2. Gradients procurement given a budget
 - Some gradients expensive, some cheap.

0

• Purchase in a way that **maximizes the model utility**.

2. Trading Framework

Federated Learning

 \bigcirc

- **1. Model broadcasting:** The server broadcasts the global model.
- **2. Local training:** Each data owner trains its model on its local data to derive a local gradient.
- **3. Gradient aggregation:** The servers aggregates all the local gradients to derive a global gradient.
- **4. Model updating:** The server updates the global model by the global gradient.

6

• Auction mech.: for gradients procurement

0

0

• Aggregation mech.: for gradients aggregation

6

Note: $\forall i, \epsilon_i \leq \overline{\epsilon_i} \text{ and } p_i \geq v_i(\epsilon_i)$.

0 FL-Market 1. financial budget B 2. valuation functions v'_1, \ldots, v'_n model parameters w^r privacy budgets $\bar{\epsilon}'_1, \dots, \bar{\epsilon}'_n$ data sizes d_1, \dots, d_n 3. privacy loss $\epsilon_1, \ldots, \epsilon_n$ payments p_1, \ldots, p_n 5. perturbed gradient n4. perturbed local $\widetilde{g}_{\lambda} = \sum \lambda_i \cdot \widetilde{g}_i$ Model buyer Data owners gradients $\tilde{g}_1, \dots, \tilde{g}_n$ FL broker Step 4: Local gradient computing Note: each \tilde{g}_i satisfies ϵ_i -LDP.

Mechanism Design Problems

- Aggregation mech.
 - Aggr $(\epsilon_1, \dots, \epsilon_n, d_1, \dots, d_n) \rightarrow \lambda = [\lambda_1, \dots, \lambda_n]$
 - Objective: To maximize the global gradient's utility with respect to λ
- Auction mech.
 - Auc $(b'_1, \dots, b'_n, B) \rightarrow \epsilon_1, \dots, \epsilon_n, p_1, \dots, p_n$
 - Objective: To maximize the global gradient's utility with respect to $\epsilon_1, \dots, \epsilon_n$
 - Constraints: truthfulness, individual rationality, budget feasibility...

3. Solution & Evaluation

Aggregation Mechanism: OptAggr

- Equivalent to a **convex** quadratic programming problem.
 - Can be well solved by existing solvers in polynomial time.
 - Only have **nonanalytical** solutions

0

• OptAggr decides optimal aggregation weights by employing an existing solver.

Auction Mechanism

- Challenge:
 - OptAggr does not provide an analytical solution
 - The auction objective is thus also nonanalytical.
 - Traditional auction theory only deals with analytical objectives.
- Solution: Automated mechanism design
 - To optimize the auction objective by machine learning.

RegretNet [8]

- SOTA automated mechanism design framework
 - Allocation network: for allocating privacy losses
 - Payment network: for setting payments
- Problems that makes optimization hard:
 - Only for **single-unit** auctions

- Randomized auction results
 - When all $\epsilon_i = 0$, the expected error is unbounded.

Auction Mechanism: DM-RegretNet

• Support multi-unit auctions

- More possible values of privacy loss
- **Deterministic** auction results
 - Given the same bids and budget, the privacy losses are deterministic

Error Bound

0

• How do DM-RegretNet and OptAggr perform in terms of **minimizing the** error bound of the global gradient?

Model Accuracy

0

 How do DM-RegretNet and OptAggr perform in terms of optimizing model accuracy?

Thank you for listening!

Mechanism Design Problems

- Aggregation mech:
 - Aggr $(\epsilon_1, \dots, \epsilon_n, d_1, \dots, d_n) \rightarrow \lambda = [\lambda_1, \dots, \lambda_n]$
- Auction mech:
 - Auc $(b'_1, \dots, b'_n, B) \to \epsilon_1, \dots, \epsilon_n, p_1, \dots, p_n$
 - Truthfulness: Obtain the highest profit by bidding the real preference.
 - Individual rationality (IR): Non-negative profit
 - Budget feasibility (BF)

Problem 1 (Error Bound-Minimizing Aggregation). $\min_{\boldsymbol{\lambda} = Aggr(\boldsymbol{\epsilon}, \boldsymbol{d})} ERR(\tilde{g}_{\boldsymbol{\lambda}}; \boldsymbol{\epsilon}, \boldsymbol{d}) = \sup_{g_1, \dots, g_n} err(\tilde{g}_{\boldsymbol{\lambda}}; \boldsymbol{\epsilon}, \boldsymbol{d})$ *S.t.*: $\forall i, \lambda_i \in [0, 1]$, and $\sum_{i=1}^n \lambda_i = 1$

Problem 2 (Budget-Limited Multi-Unit Multi-Item Procurement Auction).

 $\min_{\boldsymbol{\epsilon},\boldsymbol{p}=\boldsymbol{A}\boldsymbol{u}\boldsymbol{c}(\boldsymbol{b}',B)} \mathbb{E}_{(\boldsymbol{b}',B)}[ERR(\tilde{g}_{\boldsymbol{\lambda}};\boldsymbol{\lambda}=\boldsymbol{A}\boldsymbol{g}\boldsymbol{g}\boldsymbol{r}(\boldsymbol{\epsilon},\boldsymbol{d}))]$ S.t.: $\forall i, \epsilon_i \in [0, \bar{\epsilon}'_i], \ truthfulness, \ IR, \ and \ BF.$

Joint Optimization

6

• Aggregation is affected by and feeds back into auction

