2023.8.29 VLDB'23

OLIVE: Oblivious Federated Learning on TEE against the risk of Sparsification

<u>Fumiyuki Kato 1</u>, Yang Cao 2, Masatoshi Yoshikawa 3 1 Kyoto University, 2 Hokkaido University, 3 Osaka Seikei University,

Background

Trusted Execution Environment (TEE)

- TEE enables secure computation on remote machine
- Intel SGX one of TEE implementations
 - 1. Memory encryption
 - Can hide code and data against privileged software (OS/VMM)
 - 2. Remote Attestation
 - Can verify the integrity of the code and data externally
- Memory access pattern leakage via side-channels
 - Cache-based (Prime+Probe) [1]
 - Page-based [2]

Access patterns can be visible regardless of memory encryption

Moghimi, el.al., How SGX amplifies the power of cache attacks." International Conference on Cryptographic Hardware and Embedded Systems . Springer, Cham, 2017.
 Y. Xu, el.al., "Controlled-channel attacks: Deterministic side channels for untrusted operating systems." 2015 IEEE Symposium on Security and Privacy.

Federated Learning (FL)

- Collaborative ML scheme with
 - many participants
 - a central aggregation server
- Problem: Locally trained model is sufficient to leak sensitive information

[3] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep leakage from gradients." Advances in neural information processing systems 32 (2019).

		Trust model	Utility
The combination of CDP improves the utility of DP-FL. (vs Shuffle DP)	CDP-FL [4, 28, 50, 84]	Trusted server	Good
	LDP-FL [45, 74, 81, 92]	Untrusted server	Limited
	Shuffle DP-FL [29, 44]	Untrusted server + Shuffler	Shuffle DP-FL \leq CDP-FL
	Olive (Ours)	Untrusted Server with TEE	OLIVE = CDP-FL

Problem of FL with server-side TEE

Problem: The impact of side-channels of TEE is unknown

- What is the specific privacy risks?
- What is practical protection against the attacks?

Contributions

- In FL with server-side TEE, we study both of Attack and Defense in terms of memory access pattern leaks
- Attack
 - We show that the sparsified parameters often used in FL can leak sensitive information via memory access patterns
 - We demonstrate that privacy attacks are possible using information obtained from memory access patterns
- Defense
 - We design an efficient oblivious FL aggregation algorithm
 - We evaluate the proposed defensive mechanism on real-world scales

Attack analysis

Memory Access Pattern Analysis on Aggregation Operation of FL

Overview of Attack Design

- To show the leaked information can leak private information
- The goal is to infer the sensitive label set of the target participant

Empirical Evaluation: Setup

- Dataset
 - MNIST and CIFAR100 (, and Purchase100 (tabular dataset) in the paper)
- FL setting
 - Sparsification: with Top-10% sparsification
 - The maximum #Labels of each participant is controlled (#Participants: 1000)
- Evaluation Metrics
 - All: The ratio that predicted labels exactly match target label set
 - **Top-1**: The ratio that top-1 predict-scored label is included in target label set
 - Weakest privacy leak

Result: Attack is overall successful

The sparser, the easier the attack

The number of labels of participants is fixed at 2.

[5] Shi, Shaohuai, et al. "Understanding top-k sparsification in distributed deep learning." arXiv preprint arXiv:1911.08772 (2019).

Defensive mechanism

Oblivious Algorithm

- Oblivious algorithm is an algorithm whose memory access pattern is independent of the input values
 - No problem if memory access pattern leaks from side-channels

Oblivious Algorithm: Baseline

- Non-oblivious method
 - O(nk)
- Baseline method (oblivious)
 - Full memory access approach
 - O(nkd)
 - n: #Participants
 - k: Dimensions of the sparsified model
 - *d*: Dimensions of the dense model

Using CMOV (of x86 instruction)-based oblivious primitive (**OMOV**) to ensure the program's execution path, including conditional branches, oblivious

Non-oblivious O(nk)

But, can we make more efficient oblivious algorithm for this purpose?

Oblivious Algorithm: Advanced

- Advanced method
 - $O\left((nk+d)\log^2(nk+d)\right)$
 - Using oblivious sort
 - Bitonic sort causes fixed memory access pattern

Sorting network of Bitonic sort (https://en.wikipedia.org/wiki/Bitonic_sorter)

Received sparsified parameters (nk-Dim)

Overview of Advanced method

- Non Oblivious, Path ORAM (ZeroTrace [6]), Baseline, Advanced
- with Intel SGX (PRM: 128 MB)

Advanced method is reasonably fast with over millions of parameters

[6] Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. "ZeroTrace: Oblivious memory primitives from Intel SGX." Symposium on Network and Distributed System Security (NDSS). 2018.

Conclusions

- In FL with server-side TEE, we studied both of Attack and Defense
- Attack
 - We show that the sparsified parameters often used in FL can leak sensitive information via memory access patterns
 - We demonstrated that privacy attacks are possible using information obtained from memory access patterns
- Defense
 - We designed an efficient oblivious FL aggregation algorithm
 - We evaluated the proposed defensive mechanism on real-world scales

Appendix

Assumptions

- Attacker can access
 - Test dataset
 - Aggregated global model in each round
 - Observe access patterns (from side-channels)

Top-k sparsification is used

Attack: Cache line-level

 Even if the granularity of the observation becomes a cachet line, the results don't change much

Figure 7: Cacheline-level leakage on CNN of CIFAR10: Attacks are possible with at least slightly less accuracy.

Attack: Various test dataset

Test dataset can be very small

Path ORAM [A.1]

[Image source: https://scl.engr.uconn.edu/research/oram.php]

[A.1] Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X. and Devadas, S., 2013, November. Path ORAM: an extremely simple oblivious RAM protocol. In Proceedings of the 2013
 ACM SIGSAC conference on Computer & communications security (pp. 299-310). ACM.
 [A.2] Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. "ZeroTrace: Oblivious memory primitives from Intel SGX." Symposium on Network and Distributed System Security (NDSS). 2018.

Discussion: Differentially Obliviousness

• Chen et al [A.3] formalize DO algorithms

Definition 2.1 (Differentially oblivious (stateless) algorithms). Let ϵ, δ be functions in a security parameter λ . We say that the stateless algorithm M satisfies (ϵ, δ) -differential obliviousness, iff for any neighboring inputs I and I', for any λ , for any set S of access patterns, it holds that

 $\Pr[\mathbf{Accesses}^{M}(\lambda, I) \in S] \leq e^{\epsilon(\lambda)} \cdot \Pr[\mathbf{Accesses}^{M}(\lambda, I') \in S] + \delta(\lambda)$

where $\mathbf{Accesses}^{M}(\lambda, I)$ is a random variable denoting the ordered sequence of memory accesses the algorithm M makes upon receiving the input λ and I.

 NIPS '19 [A.4] and CCS '18 [A.5] proposed similar algorithms to gurantee DO

[A.3] Chan et al, Foundations of differentially oblivious algorithms. SIAM 2019.
[A.4] Joshua et al, An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors. NIPS 2019
[A.5] Mazloom et al. Secure Computation with Differentially Private Access Patterns. CCS 2018

Discussion: Differentially Obliviousness

- NIPS '19 [A.4]
 - p padding, oblivious shuffle
 - $O\left((\mathsf{nk} + |\mathbf{p}|) \log^2(\mathsf{nk} + |\mathbf{p}|)\right)$
 - leaks differenitally private histogram of all indices

It doesn't work due to huge padding size
(1) Sensitivity (i.e., d) can be too large (|p| is O(kd))
(2) Can only use one-sided noise

Discussion: Differentially Obliviousness

- NIPS '19 [A.4]
 - p-padding, oblivious shuffle
 - $O\left((nk + |\mathbf{p}|)\log^2(nk + |\mathbf{p}|)\right)$
 - leaks differenitally private histogram of all indices

Access pattern histogram with DP

p is too large in FL setting

- noise vector $z \in \mathbb{R}^d$
 - z_i ~ Lap(2k/ε)
 - d-dimensional
 - Then, **p** is **O(kd)**
 - kd is very large
- Remember

$$O\left((\mathsf{nk}+\mathbf{p})\log^2(\mathsf{nk}+\mathbf{p})
ight)$$

 Moreover, it is necessary to allocate memory for the padded data, which is very incompatible with SGX that has poor memory

Algorithms

Algorithm 3 Baseline

Input: $q = q_1 \parallel ... \parallel q_n$: concatenated gradients, *nk* length **Output:** q^* : aggregated parameters, d length

- 1: initialize aggregated gradients q^*
- 2: for each $(idx, val) \in q$ do
- /* *c* is the number of weights included in one cacheline */ 3:
- /* offset indicates the position of *idx* in the cacheline */ 4:
- **for** each $(idx^*, val^*) \in q^*$ if $idx^* \equiv \text{offset} \pmod{c}$ **do** 5:

▶ target index or not

- 6:
- $flag \leftarrow idx^* == idx$
- $val' \leftarrow o_mov(flag, val^*, val^* + val)$ 7:
- write *val'* into idx^* of q^* 8:

9: **return** *q*^{*}

Algorithm 4 Advanced

Input: $q = q_1 \parallel ... \parallel q_n$: concatenated gradients, *nk* length **Output:** g^* : aggregated parameters, d length 1: /* initialization: prepare zero-valued gradients for each index */ 2: $q' \leftarrow \{(1,0), ..., (d,0)\}$ ▶ all values are zero 3: $q \leftarrow q \parallel q'$ ▷ concatenation 4: /* oblivious sort in $O((nk+d)\log^2(nk+d))$ */ 5: oblivious sort *q* by index 6: /* oblivious folding in O(nk + d) */ 7: $idx \leftarrow index$ of the first weight of q 8: $val \leftarrow$ value of the first weight of q9: for each $(idx', val') \in q$ do \triangleright Note: start from the second weight of q $flag \leftarrow idx' == idx$ 10: $/* M_0$ is a dummy index and very large integer */ 11: $idx_{prior}, val_{prior} \leftarrow o_{mov}(flag, (idx, val), (M_0, 0))$ 12: write $(idx_{prior}, val_{prior})$ into idx' - 1 of q 13: $idx, val \leftarrow o_mov(flag, (idx', val'), (idx, val + val'))$ 14: 15: /* oblivious sort in $O((nk+d)\log^2(nk+d))$ */ 16: oblivious sort q by index again 17: **return** take the first *d* values as q^*

Oblivious Primitives

O_MOV

- Using CMOV (x86 instruction)
- set the value of either "a" or "b" in the register depending on the conditional flag
 - adversary cannot see
- constructs o_mov (oblivious move), o_swap (oblivious swap), o_write (oblivious write)

38	#[inline]
39	pub fn o_swap <t>(flag: isize, x: &T, y: &T) {</t>
40	unsafe {
41	llvm_asm!(
42	"test %rax, %rax \n\t
43	movq (%r8), %r10 \n\t
44	movq (%rdx), %r9 \n\t
45	mov %r9, %r11 \n\t
46	cmovnz %r10, %r9 \n\t
47	cmovnz %r11, %r10 \n\t
48	movq %r9, (%rdx) \n\t
49	movq %r10, (%r8) \n\t"
50	
51	: "{rax}"(flag), "{rdx}" (x), "{r8}" (y)
52	: "rax", "rdx", "r8", "r9", "r10", "r11"
53	: "volatile"
54);
55	}
56	o swap by x86
57	

Oblivious Primitives

O_WRITE

- n times oblivious mov (o_mov)
- x16 faster by cache-line optimization in Baseline method

: "{r8}"(flag), "{rax}" (*cache_line_addr), "{rdx}" (val)

: "={rax}"(ret)

: "volatile"

last += 1;

*cache_line_addr = ret;

: "rax", "rcx", "rdx", "r8"