
OLIVE: Oblivious Federated Learning on
TEE against the risk of Sparsification

Fumiyuki Kato 1, Yang Cao 2, Masatoshi Yoshikawa 3

1 Kyoto University, 2 Hokkaido University, 3 Osaka Seikei University,

2023.8.29 VLDB’23

Summary

2

…

∆𝒘𝟏
𝒕

∆𝒘𝟐
𝒕

∆𝒘𝒏
𝒕

∆𝒘𝟏
𝒕

∆𝒘𝒏
𝒕

…∆𝒘𝟐
𝒕 𝟏

𝒏
%

𝟏

𝒏
𝒘𝒊
𝒕

Untrusted Server

𝐰𝐭"𝟏

Side-Channels

Trust Boundary

TEE…Participants

o Motivation:
 FL with server-side TEE (Figure below)
o Problem:
 Privacy risk of Side-channels in FL with TEE
o Findings:
 Sparsified parameter can cause privacy leak
o Solution:
 Efficient Oblivious defensive mechanism

Aggregation

∆𝒘𝟏
𝒕

∆𝒘𝟐
𝒕

∆𝒘𝒏
𝒕

…

Federated Learning

Background

3

Access patterns can be
visible regardless of
memory encryption

Trusted Execution Environment (TEE)

4

§ Intel SGX – one of TEE implementations
§ 1. Memory encryption

§ Can hide code and data against privileged software (OS/VMM)
§ 2. Remote Attestation

§ Can verify the integrity of the code and data externally

§ Memory access pattern leakage via side-channels
§ Cache-based (Prime+Probe) [1]
§ Page-based [2]

Untrusted Server

TEE

OS/VMM

code data

[1] Moghimi, el.al., How SGX amplifies the power of cache attacks.” International Conference on Cryptographic Hardware and Embedded Systems . Springer, Cham, 2017.
[2] Y. Xu, el.al., "Controlled-channel attacks: Deterministic side channels for untrusted operating systems." 2015 IEEE Symposium on Security and Privacy.

§ TEE enables secure computation on remote machine
TEE is (hardware-assisted)
isolated environment for

code and data

Federated Learning (FL)

5[3] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep leakage from gradients." Advances in neural information processing systems 32 (2019).

…

∆𝒘𝟏
𝒕

∆𝒘𝟐
𝒕

∆𝒘𝒏
𝒕

∆𝒘𝟏
𝒕

∆𝒘𝒏
𝒕

…∆𝒘𝟐
𝒕 𝟏

𝒏
%

𝟏

𝒏
𝒘𝒊
𝒕…

Aggregation
Server

Local
training

Participants

𝐰𝐭

𝐰𝐭

𝐰𝐭

Locally trained model parameter
(or gradients) includes sensitive
information [3]

§ Collaborative ML scheme with
§ many participants
§ a central aggregation server

§ Problem: Locally trained model is sufficient to leak sensitive information

Global Model 𝐰𝐭)𝟏

Exchanging model instead of training data

FL with server-side TEE

6

…

∆𝒘𝟏
𝒕

∆𝒘𝟐
𝒕

∆𝒘𝒏
𝒕

∆𝒘𝟏
𝒕

∆𝒘𝒏
𝒕

…∆𝒘𝟐
𝒕

𝟏
𝒏
%

𝟏

𝒏
𝒘𝒊
𝒕

Untrusted Server

TEE…

Participants

Aggregation
operation

∆𝒘𝟏
𝒕

∆𝒘𝟐
𝒕

∆𝒘𝒏
𝒕

…

FL with TEE

Hide parameters against the
server by TEE’s encryption,

which is only decrypted in TEE

The combination of CDP
improves the utility of
DP-FL. (vs Shuffle DP)

Problem of FL with server-side TEE

7

…

∆𝒘𝟏
𝒕

∆𝒘𝟐
𝒕

∆𝒘𝒏
𝒕

∆𝒘𝟏
𝒕

∆𝒘𝒏
𝒕

…∆𝒘𝟐
𝒕

𝟏
𝒏
%

𝟏

𝒏
𝒘𝒊
𝒕

Untrusted Server

TEE…

Participants

Aggregation
operation

∆𝒘𝟏
𝒕

∆𝒘𝟐
𝒕

∆𝒘𝒏
𝒕

…

FL with TEE

Problem: The impact of side-channels of TEE is unknown
○ What is the specific privacy risks?
○ What is practical protection against the attacks?

Can see memory aceess patterns

8

Contributions

§ In FL with server-side TEE, we study both of Attack and Defense in
terms of memory access pattern leaks

§ Attack
§ We show that the sparsified parameters often used in FL can leak

sensitive information via memory access patterns
§ We demonstrate that privacy attacks are possible using information

obtained from memory access patterns

§ Defense
§ We design an efficient oblivious FL aggregation algorithm
§ We evaluate the proposed defensive mechanism on real-world scales

Attack analysis

9

10

Memory Access Pattern Analysis on
Aggregation Operation of FL

§ If parameter is Dense, the memory
access of the aggregation operation
is independent from inputs

§ In Sparsified setting, memory access
pattern can leak the selected
parameter indices (data-dependent)

[4] Mitra, Aritra, et al. "Linear convergence in federated learning: Tackling client heterogeneity and sparse gradients." Advances in Neural Information Processing Systems 34 (2021)

Aggregated parameters
(𝒅 -dimensional vector)

Received concatenated parameters
(𝒏𝒅 -dimensional vector)

participant 𝒊 ∈ [𝒏] 𝒈𝒊

(Data-dependent) Top-𝒌 sparsification
is often used in FL for better Comms-
cost and better utility [4]

𝒅 -dimensional vector

𝒈𝒊

𝒌 -dimensional vector
of tuple (index, value)

(𝒏𝒌 -dimensional vector)

Server-side aggregation operation in TEE

Dense: Input-independent

Sparse: Input-dependent

11

Overview of Attack Design

RAM

TEE
Aggregation

Untrusted Server
Memory access pattern

Label
1

Label
2

Label
3

Test DatasetGradient indices
for each labels

Target Gradient indices Model at 𝒕 − 𝟏
Model at 𝒕

Classifier

Train classifier for each
round (or all in batch)

§ To show the leaked information can leak private information
§ The goal is to infer the sensitive label set of the target participant

②

③

①
Observe memory access pattern
and extract parameter indices
for each target participant

Infer target label set

Attacker is mainly assumed to
access global test dataset, and

aggregated model of each round

⓪

12

Empirical Evaluation: Setup
§ Dataset

§ MNIST and CIFAR100 (, and Purchase100 (tabular dataset) in the paper)

§ FL setting
§ Sparsification: with Top-10% sparsification
§ The maximum #Labels of each participant is controlled (#Participants: 1000)

§ Evaluation Metrics
§ All: The ratio that predicted labels exactly match target label set
§ Top-1: The ratio that top-1 predict-scored label is included in target label set

§ Weakest privacy leak

Label set = {1,3}

Label set = {3,5,8}
(All) Inferred label set = {3,5,8}
(Top-1) Top-1 inferred label = {5}

AttackerParticipants

infer

13

Result: Attack is overall successful

Attack
success rate

The more labels a participant has, the harder it is to infer
Max #labels per participant

Inferring Top-1 label is
easy

Inferring exact all label set is
also possible!!

{3,5,8} {3,5,8}
Exact match

{3,5,8} 5
included

14

The sparser, the easier the attack
When sparse ratio=0.3%, attacks are almost 100%
successful even we have 100 class labels.
(Common sparse ratio in FL is, for example, 0.1% [5])

The number of labels of participants is fixed at 2.
[5] Shi, Shaohuai, et al. "Understanding top-k sparsification in distributed deep learning." arXiv preprint arXiv:1911.08772 (2019).

The sparser, the higher
attack success rate

Defensive mechanism

15

16

Oblivious Algorithm

§ Oblivious algorithm is an algorithm whose memory access pattern is
independent of the input values
§ No problem if memory access pattern leaks from side-channels

Oblivious Algorithm

Memory

Input 1 Input 2

Memory access pattern is
independent of any input

No information

17

Oblivious Algorithm: Baseline

But, can we make more efficient oblivious algorithm for this purpose?

Using CMOV (of x86 instruction)-based
oblivious primitive (OMOV) to ensure the

program's execution path, including
conditional branches, oblivious

§ Non-oblivious method
§ 𝑶(𝒏𝒌)

§ Baseline method (oblivious)
§ Full memory access approach
§ 𝑶(𝒏𝒌𝒅)

§ 𝒏: #Participants
§ 𝒌: Dimensions of the sparsified model
§ 𝒅: Dimensions of the dense model

𝑔, … 𝑔-

Received sparsified parameters (𝒏𝒌-Dim)

𝑔∗
Aggregated parameters (𝒅-Dim)

𝑔, … 𝑔-…

…

OMOV

Update

Baseline oblivious 𝑶(𝒏𝒌𝒅)

Non-oblivious 𝑶(𝒏𝒌)

with 𝒅 dummy access

18

Oblivious Algorithm: Advanced

§ Advanced method
§ 𝑶 𝒏𝒌 + 𝒅 𝐥𝐨𝐠𝟐 𝒏𝒌 + 𝒅
§ Using oblivious sort

§ Bitonic sort causes fixed memory
access pattern

𝑔, … 𝑔-

Received sparsified parameters (𝒏𝒌-Dim)

𝑔∗

Aggregated parameters (𝒅-Dim)

Advanced method
Next page

Sorting network of Bitonic sort
(https://en.wikipedia.org/wiki/Bitonic_sorter)

19

Overview of Advanced method

𝑔, … 𝑔-

Received sparsified parameters (𝒏𝒌-Dim)

G 𝟏, 𝟎 , 𝟐, 𝟎 , 𝟑, 𝟎 , …, 𝒅 − 𝟏, 𝟎 , 𝒅, 𝟎

Zero-initialized parameter (𝒅-Dim)

concatenate

𝟏, 𝟎 , 𝟏. 𝟑 , 𝟏. 𝟐 , 𝟏. 𝟑 , 𝟐, 𝟎 , 𝟐. 𝟏 , 𝟑, 𝟎 , …, 𝒅 − 𝟏, 𝟎 , 𝒅 − 𝟏, 𝟏 𝒅, 𝟎 , 𝒅, 𝟐
oblivious sort

𝑴,𝟎 , 𝑴, 𝟎 , 𝑴, 𝟎 , 𝟏. 𝟖 , 𝑴, 𝟎 , 𝟐. 𝟏 , 𝑴, 𝟎 , …, 𝑴,𝟎 , 𝒅 − 𝟏, 𝟏 𝑴, 𝟎 , 𝒅, 𝟐
oblivious fold

+ + + + + +

𝑶(𝒏𝒌 + 𝒅))

𝟏. 𝟖 , 𝟐. 𝟏 , … , 𝒅 − 𝟏, 𝟏 , 𝒅, 𝟐 , 𝑴, 𝟎 , 𝑴, 𝟎 , … , 𝑴, 𝟎
oblivious sort

Aggregated parameters (the first 𝒅-Dim vector)

OMOV OMOV OMOV …

20

Evaluation

§ Non Oblivious, Path ORAM (ZeroTrace [6]), Baseline, Advanced
§ with Intel SGX (PRM: 128 MB)

[6] Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. "ZeroTrace: Oblivious memory primitives from Intel SGX."
Symposium on Network and Distributed System Security (NDSS). 2018.

Log scale

Most efficient ORAM implementation
But, with some modification to

implement on SGX’s security model [6]

(And #participant =100)

Advanced method is
reasonably fast with over
millions of parameters

21

§ In FL with server-side TEE, we studied both of Attack and Defense
§ Attack

§ We show that the sparsified parameters often used in FL can leak sensitive
information via memory access patterns

§ We demonstrated that privacy attacks are possible using information
obtained from memory access patterns

§ Defense
§ We designed an efficient oblivious FL aggregation algorithm
§ We evaluated the proposed defensive mechanism on real-world scales

Conclusions

Appendix

22

23

Assumptions

§ Attacker can access
§ Test dataset
§ Aggregated global model in each round
§ Observe access patterns (from side-channels)

§ Top-k sparsification is used

24

Attack: Cache line-level

§ Even if the granularity of the observation becomes a cachet line, the results don't
change much

25

Attack: Various test dataset

§ Test dataset can be very small

26

Path ORAM [A.1]

In the trust model of
SGX, Trusted Domain
of ORAM also needs
to be oblivious [A.2]

[A.1] Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X. and Devadas, S., 2013, November. Path ORAM: an extremely simple oblivious RAM protocol. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security (pp. 299-310). ACM.
[A.2] Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. "ZeroTrace: Oblivious memory primitives from Intel SGX." Symposium on Network and Distributed System Security (NDSS). 2018.

Access cost can be reduced to O(log N)

[Image source: https://scl.engr.uconn.edu/research/oram.php]

§ Chen et al [A.3] formalize DO algorithms

§ NIPS ’19 [A.4] and CCS ’18 [A.5] proposed similar algorithms to
gurantee DO

27

[A.3] Chan et al, Foundations of differentially oblivious algorithms. SIAM 2019.
[A.4] Joshua et al, An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors. NIPS 2019
[A.5] Mazloom et al. Secure Computation with Differentially Private Access Patterns. CCS 2018

Discussion: Differentially Obliviousness

28

Discussion: Differentially Obliviousness

𝑔∗

𝑔, … 𝑔- p

n*k + |p|

§ NIPS ’19 [A.4]
§ p padding, oblivious shuffle
§ 𝑶 nk+ |p| 𝐥𝐨𝐠𝟐(nk+ |p|)
§ leaks differenitally private

histogram of all indices …
…

oblivious shuffle

1 2 … d address

Access pattern histogram with DP

… G*

G

G

[A.4] Joshua et al, An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors. NIPS 2019

It doesn’t work due to huge padding size
(1) Sensitivity (i.e., d) can be too large (|p| is O(kd))
(2) Can only use one-sided noise

29

Discussion: Differentially Obliviousness

§ NIPS ’19 [A.4]
§ p padding, oblivious shuffle
§ 𝑶 nk+ |p| 𝐥𝐨𝐠𝟐(nk+ |p|)
§ leaks differenitally private

histogram of all indices

1 2 … d address

Access pattern histogram with DP

…

[A.4] Joshua et al, An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors. NIPS 2019

p is too large in FL setting
§ noise vector z ∈ 𝐑𝐝

§ z_i ~ Lap(2k/ε)
§ d-dimensional

§ Then, p is 𝑶(kd)
§ kd is very large

§ Remember
§ 𝑶 nk+ p 𝐥𝐨𝐠𝟐(nk+ p)

§ Moreover, it is necessary to
allocate memory for the padded
data, which is very incompatible
with SGX that has poor memory

30

Algorithms

Yang

§ O_MOV
§ Using CMOV (x86 instruction)
§ set the value of either “a” or “b” in

the register depending on the
conditional flag
§ adversary cannot see

§ constructs o_mov (oblivious
move), o_swap (oblivious swap),
o_write (oblivious write)

31

o_swap by x86

Oblivious Primitives

§ O_WRITE
§ n times oblivious mov

(o_mov)
§ x16 faster by cache-line

optimization in Baseline
method

32

Oblivious Primitives

𝑔∗

O_MOV

… …

o_mov

